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Some specific features of atmospheric tubulence" 

By A. M. OBOUKHOV 
Institute of Atmospheric Physics, Moscow 

(Received 20 October 1961) 

The spectrum of atmospheric turbulence is very broad by comparison with 
spectra in wind tunnels. We introduce the notion of small-scale and large-scale 
turbulence. Small-scale turbulence consists of a set of disturbances, the scales 
of which do not exceed the distance to the wall and for which the hypothesis of 
three-dimensional isotropy is valid in a certain rough approximation. Large- 
scale turbulence is essentially anisotropic; the horizontal scale in the atmosphere 
is much larger than the vertical one, the latter being confined to a certain charac- 
teristic height H .  The horizontal scale varies widely according to the external 
conditions and characteristics of the medium. 

The mean value of the internal scale of turbulence 

I, = (."€)$ (1) 

is of the order of lcm for the atmosphere. The maximum horizontal scale of 
turbulent inhomogeneities is of the order of Lo = 2500 km according to different 
estimates.? The range of the spectrum of atmospheric turbulence in the hori- 

or 28 octaves. 
It is well known that the ratio of the external turbulent scale to the internal 

one is proportional to the Reynolds number to the power 3/4. The fluctuating 
character of the statistical properties of the small-scale turbulence is due to a 
very large spectrum width of atmospheric disturbances. As practice shows, it is 
enough to average the results of the spectral analysis of fluctuations (empirical 
energy distribution) over the period of 10 min in order to obtain relatively stable 
spectra of turbulence fluctuations in the surface layer. Using Kolmogorov's 
theory one can try to approximate these distributions by a relation of the form 

zontal direction is Lo/& = 2.5 x los 

E ( k )  = CePkd. ( 2 )  

* Editors' footnote. This paper is a record of part of a lecture given by the author at 
the JUGG-IUTAM Symposium on Fundamental Problems in Turbulence and their Rela- 
tion to Geophysics, at Marseilles in September 1961. The part reproduced here concerns 
the local structure of turbulence in general, and was related to a lecture given by A. N 
Kolmogorov at another symposium in the preceding week (see the following paper in this 
journal). The two lectures are being included in the published records of the proceedings of 
the respective Symposia, and are published here also in view of their interest to a large 
number of English-speaking readers. 

7 The fist estimate of this kind was provided by Defant (1921) on the basis of horizontal 
mixing study. Modern research on the correlation function behaviour of meteorological 
elements at distances of the order of some hundred and thousand km give similar values. 
The external scale in this case is expressed by a rather distinct break in the correlation 
functions. 
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As practice shows, one succeeds in the majority of cases with a rather high 
degree of an accuracy (of the order of 5 yo) (Gurvitch 1960). Successive measure- 
ments show that, although each measurement is in satisfactory agreement with 
a ( - 513)-power law in a certain range of scales, the intensity of turbulence varies 
from measurement to measurement, which may be explained by varia.nce of the 
energy dissipation rate e (the main parameter of the locally isotopic theory). 
These slow fluctuations of energy dissipation are due to change of the large-scale 
processes in the observation region, or 'weather ' in a general sense. Similar slow 
macroscopic changes of energy dissipation must be observed a t  very large 
Reynolds numbers and they are actually observed in the atmosphere. 

The comparatively small statistical stability of the parameter e requires a 
more distinct determination of a statistical ensemble by which the averaging is 
made in the theory of locally-isotropic turbulence.* 

Let MI and Mz be two observation points located at  a distance apart which 
exceeds the internal scale of turbulence, but is small by comparison with the 
distance to the boundary of the flow (this is the condition of applicability of a 
local treatment of turbulence). 

Let us consider the rate of dissipation averaged over some volume of a standard 
form connected invariantly with the points Ml and M,. As an example of such a 
volume VM,,M, it is reasonable to take the interior of the sphere with the observa- 
tion points as poles. Then the average is 

Assume that in every measurement of turbulent fluctuations, in particular, in 
the measurement of an instantaneous difference of velocity Av = v(Mz) - v(Ml), 
the value E is recorded simultaneously. Let us now fix the observation points 
(and the distance r also) and then select only those occasions at which 8 takes 
a certain given value. On repeating this operation many times (under some like 
external conditions) we obtain the statistical ensemble which could conditionally 
be called a 'pure' one depending upon the selection of the observation points 
and the value of Z. as parameters. 

Now let us compute for this ensemble two-point mean values of momentum 
introduced by Kolmogorov (1941 a): 

Bnn = ((Av)",, = ((Av)~,), = ((Av)",. 
I n  accordance with the general principle of local similarity these values will 
depend only upon Z, upon the distance r and the internal Reynolds number 

R ( r )  = E b Q / v .  (4) 

{(AV);); = C ( 3 )  8 3 8 .  ( 5 )  

For the mean-square of the longitudinal difference of velocities we have the form 

* In  the study of turbulence in wind tunnels one usually takes averages over a certain 
ensemble corresponding to a time ensemble, and the averaging period is larger than the 
life-time of the largest eddies. In  the case of atmospheric turbulence there arise specific 
difficulties; so that the life-time of the largest eddies in the atmosphere greatly exceeds, 
as a rule, the time of measuring turbulent characteristics. 
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The second self-similarity hypothesis of Kolmogorov at rather large Reynolds 
numbers means in this scheme that if the distances r are large enough, and B is 
fixed, the function C@) can be replaced by a constant 

This assumption will be called a similarity hypothesis for a ‘pure ’ regime. 
In  practice we always deal with some mixed ensemble in which the value B 

varies in accordance with some general statistical law. A natural time ensemble, 
corresponding to continuous observations of a certain limited part of a turbulent 
flow for a long enough period of time should be considered as a ‘mixed regime ’. 

Let us consider now a simplified scheme, for which natural means (expecta- 
tions) of the values required can be computed. Assume that for any choice of the 
observation points M .  and M, the value E has a logarithmically normal distribu- 
tion.* This means that E can be written in the form 

B = e o e ~ ,  (7) 

where e, is the ‘mean geometrical’ dissipation value, and 7 is a random variable 
obeying the Gaussian distribution law with parameters 

( 8 )  
- 
7 = (7) = 0, %7) = ( r2 )  = P. 

The logarithmic dispersion ,8 is the main dimensionless parameter characterizing 
the statistical distribution. For the logarithmic distribution it is not difficult 
to compute the moment of any order to be 

( ~ a )  = ec eSa2P. 

E = e,e+B. 
In  particular, if a = 1, we have 

Note that in contrast to eo and ,8, which depend upon the distance r, the value 
E does not depend upon the observation distance r ;  E is the main macroscopic 
characteristic, which can be obtained, for example, from general considerations 
of the energy balance of the system.? Further, we shall consider E as a certain 
given constant. 

Now compute mean-square fluctuation of Z. ; 

(11)  

(12) 

and e0 = E( 1 + M2)- i .  (13) 

vz = { ~ z )  - 22 = €2 o (  e2B - e 9  

The logarithmic dispersion /3 can be directly expressed in terms of the variance 
coefficient M = g j C  ; 

eB = 1 + M 2 ,  

* This assumption is not very restrictive as an approximate hypothesis since the dis- 
tribution of any essentially positive characteristic can be represented by a logarithmica,lly 
Gaussian distribution with correct values of the first two moments (see also Kolmogorov 
1941 b ) .  

t For the study of turbulent structure in a wide range of scales in the atmosphere 
(flow over an infinite horizontal plane) it is reasonable to average over the horizontal 
co-ordinates, as the general statistical r6gime of motion can be considered horizontally 
homogeneous. 
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The computation of @) gives 
<a+> = E t e ~ 9 ,  

or, on using (lo), (ZP) = ~3e-FIg .  

This result can also be written with the aid of (12) in the form 

(a%) = &(I +M2)-$. (16) 

On averaging Kolmogorov~s equation (the ‘(2/3)-power law’), and taking 
into account the possible dependence of the variance coefficient M upon the 
distance r,  we obtain for the mixed regime the result 

To obtain the dependence of M on r some additional assumptions are required. 
Proceeding from the fact that the dependence of a longitudinal structure 

function upon the variance coefficient is very weak (if it exists at all), the dis- 
persion g ( a )  can be computed in the first approximation by taking the ordinary 
(2/3)-power law for the structure function if r 9 I, .  The fourth-product moments 
necessary for computation of the correlation function of disspation can be 
determined in this case’ from the Millionshchikov hypothesis (introducing some 
reduction factor). Thus, the following representation of the correlation function 
of energy dissipation can be obtained 

where 6‘ = 6 - Z, and y and y’ are the numerical coefficients which can depend on 
the Reynolds number. 

The dispersion of averaged dissipation g ( Z )  can be computed on the basis of 
this correlation function by known methods. The dependence upon the distance r 
and other parameters can be described by the following approximate relations: 

where C is a universal numerical constant.* 
By accepting an approximate dependence of the variance coefficient of dis- 

sipation upon the distance (if r 9 E l )  we obtain the value of the longitudinal 
structure function in the second approximation with correction for dissipation 
variance. 

On expressing the internal scale in terms of the external scale and the Reynolds 
number, the result obtained can be represented in the form 

* The question of dispersion of dissipation is treated in more detail in the work of 
Golitsyn (1962). 
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The computation given above is, of course, of a tentative character. However, 
it  shows that for the mixed regime (natural time ensemble) one can notice a 
very weak deviation from the (2/3)-power law if Kolmogorov’s hypotheses are 
considered valid for the ‘pure’ ensemble describing the local r6gime of turbu- 
lence at  a given dissipation value. Another alternative is that the ‘mixed’ regime 
is asymptotically described by the (2/3)-power law, in which case the local regime 
with definite dissipation cannot strictly satisfy the second Kolmogorov hypo- 
thesis (self-similarity with respect to internal Reynolds number). 
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